A New Family of Error Distributions for Bayesian Quantile Regression
نویسندگان
چکیده
We propose a new family of error distributions for model-based quantile regression, which is constructed through a structured mixture of normal distributions. The construction enables fixing specific percentiles of the distribution while, at the same time, allowing for varying mode, skewness and tail behavior. It thus overcomes the severe limitation of the asymmetric Laplace distribution – the most commonly used error model for parametric quantile regression – for which the skewness of the error density is fully specified when a particular percentile is fixed. We develop a Bayesian formulation for the proposed quantile regression model, including conditional lasso regularized quantile regression based on a hierarchical Laplace prior for the regression coefficients, and a Tobit quantile regression model. Posterior inference is implemented via Markov Chain Monte Carlo methods. The flexibility of the new model relative to the asymmetric Laplace distribution is studied through relevant model properties, and through a simulation experiment to compare the two error distributions in regularized quantile regression. Moreover, model performance in linear quantile regression, regularized quantile regression, and Tobit quantile regression is illustrated with data examples that have been previously considered in the literature.
منابع مشابه
Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملFinite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کامل